Standard Forms of Equations for Ellipses Centered at (h,k)

An ellipse centered at (h, k) and either a horizontal or a vertical major axis of length 2a satisfies one of the following equations, where a > b > 0 and LaTeX: c^2=a^2-b^2c2=a2b2 with LaTeX: c>0c>0.

Horizontal Ellipse Centered at (h,k)

Horizontal Ellipse Centered at (h,k).PNG

LaTeX: \frac{\left(x-h\right)^2}{a^2}+\frac{\left(y-k\right)^2}{b^2}=1(xh)2a2+(yk)2b2=1

Major axis is horizontal, with equation LaTeX: y=b.y=b.

Foci: LaTeX: \left(h\pm c,k\right)(h±c,k)

Vertices: LaTeX: \left(h\pm a,k\right)(h±a,k), and LaTeX: \left(h,k\pm b\right)(h,k±b)

Vertical Ellipse Centered at (h,k)

Vertical Ellipse Centered at (h,k).PNG

LaTeX: \frac{\left(x-h\right)^2}{b^2}+\frac{\left(y-k\right)^2}{a^2}=1(xh)2b2+(yk)2a2=1

The major axis is vertical, with equation LaTeX: x=bx=b.

Foci: LaTeX: \left(h,k\pm c\right)(h,k±c)

Vertices: LaTeX: \left(h,k\pm a\right)(h,k±a), and LaTeX: \left(h\pm b,k\right)(h±b,k)