Graphing a Half-Ellipse

Example

Graph  LaTeX: \frac{y}{4}=\sqrt[]{1-\frac{x^2}{25}}y4=1x225. Give the domain and range.

Solution

Square each side to get LaTeX: \frac{y^2}{16}=1-\frac{x^2}{25}y216=1x225, or LaTeX: \frac{x^2}{25}+\frac{y^2}{16}=1.x225+y216=1.

This is the equation of an ellipse with x-intercepts LaTeX: \pm5±5 and y-intercepts LaTeX: \left(0,\pm4\right)(0,±4).

In the original equation, the radical expression LaTeX: \sqrt[]{1-\frac{x^2}{25}}1x225 represents a nonnegative number, so the only possible values of y are those that give the half-ellipse shown below.

The half ellipse.PNG

This is the graph of a function with domain LaTeX: \left[-5,5\right][5,5] and range LaTeX: \left[0,4\right][0,4].