Examples of Solving Logarithmic Equations

Examples of Logarithmic Equations

Solve each equation. Give exact values.

  1. LaTeX: 7\ln x=287lnx=28
  2. LaTeX: \log_2\left(x^3-19\right)=3log2(x319)=3
  3. LaTeX: \log\left(x+6\right)-\log\left(x+2\right)=\log xlog(x+6)log(x+2)=logx
  4. LaTeX: \log_2\left[\left(3x-7\right)\left(x-4\right)\right]=3log2[(3x7)(x4)]=3
  5. LaTeX: \log\left(3x+2\right)+\log\left(x-1\right)=1log(3x+2)+log(x1)=1
  6. LaTeX: \ln e^{\ln x}-\ln\left(x-3\right)=\ln2lnelnxln(x3)=ln2

Solutions

  1. LaTeX: 7\ln x=287lnx=28
    LaTeX: \ln x=4lnx=4
    Write in exponential form.
    LaTeX: x=e^4x=e4
    The solution set is {LaTeX: e^4e4}
  2. LaTeX: \log_2\left(x^3-19\right)=3log2(x319)=3
    Write in exponential form.
    LaTeX: x^3-19=2^3\\
x^{3}-19=8\\
x^{3}  =27x319=23x319=8x3=27
    Take the cube root of both sides.
    LaTeX: x=\sqrt[3]{27}\\
x=3x=327x=3
    The solution set is {3}.
  3. LaTeX: \log\left(x+6\right)-\log\left(x+2\right)=\log xlog(x+6)log(x+2)=logx
    Use the quotient property of logarithms.
    LaTeX: log\frac{x+6}{x+2}=\log xlogx+6x+2=logx
    Use the useful property of logarithms.
    LaTeX: \frac{x+6}{x+2}=x\\
x+6=x(x+2)\\
x+6=x^{2} +2x\\
x^{2} +x-6=0\\
(x+3)(x-2)=0
x+6x+2=xx+6=x(x+2)x+6=x2+2xx2+x6=0(x+3)(x2)=0

    LaTeX: x+3=0 or x-2=0\\
x=-3\:or\:x=2x+3=0orx2=0x=3orx=2
    The proposed negative solution, -3, is not in the domain of log x in the original equation, so the only valid solution is the positive number 2. The solution set is {2}.
    NOTE: Recall that the domain of LaTeX: y=log_{a} xy=logax is LaTeX: \left(0,\infty\right)(0,).  For this reason, it is always necessary to check that proposed solutions of a logarithmic equation result in logarithms of positive numbers in the original equation.
  4. LaTeX: \log_2\left[\left(3x-7\right)\left(x-4\right)\right]=3log2[(3x7)(x4)]=3
    LaTeX: \left(3x-7\right)\left(x-4\right)=2^3\\
3x^{2}-19x+28=8\\
3x^{2}-19x+20=0\\
(3x-4)(x-5)=0\\
  3x-4=0\:or\:x-5=0\\
x=\frac{4}{3} \:or\:x=5(3x7)(x4)=233x219x+28=83x219x+20=0(3x4)(x5)=03x4=0orx5=0x=43orx=5
    A check is necessary to be sure that the argument of the logarithm in the given equation is positive. In both cases, the product LaTeX: \left(3x-7\right)\left(x-4\right)(3x7)(x4) is 8, and LaTeX: \log_28=3log28=3 is true. The solution set is {LaTeX: \frac{4}{3},543,5}.
  5. LaTeX: \log\left(3x+2\right)+\log\left(x-1\right)=1log(3x+2)+log(x1)=1
    LaTeX: \log_{10}\left[\left(3x+2\right)\left(x-1\right)\right]=1\\
(3x+2)(x-1)=10^{1} \\
3x^{2} -x-2=10\\
3x^{2}-x-12=0 log10[(3x+2)(x1)]=1(3x+2)(x1)=1013x2x2=103x2x12=0
    Using the quadratic formula we get:
    LaTeX: x=\frac{-\left(-1\right)\pm\sqrt[]{\left(-1\right)^2-4\left(3\right)\left(-12\right)}}{2\left(3\right)}=\frac{-1\pm\sqrt[]{145}}{6}x=(1)±(1)24(3)(12)2(3)=1±1456
    The solution LaTeX: \frac{-1-\sqrt[]{145}}{6}\:11456is negative, and when substituted for x in LaTeX: lo\left(x-1\right)\:lo(x1)results in a negative argument, which is not allowed. Therefore this solution must be rejected. The solution set is {LaTeX: \frac{-1+\sqrt[]{145}}{6}1+1456}.
  6. LaTeX: \ln e^{\ln x}-\ln\left(x-3\right)=\ln2lnelnxln(x3)=ln2
    Because LaTeX: e^{\ln x}=x,\:elnx=x,the equation becomes:
    LaTeX: \ln x-\ln\left(x-3\right)=\ln2lnxln(x3)=ln2
    LaTeX: \ln\frac{x}{x-3}=\ln2\\
\frac{x}{x-3} =2\\
x=2x-6\\
6=xlnxx3=ln2xx3=2x=2x66=x
    Check that the solution set is {6}.