Examples of Solving Exponential Equations

Example

Solve LaTeX: 7^x=12.\:7x=12.Give the solution to the nearest thousandth.

Solution

The properties of exponents cannot be used to solve this equation, so we apply the useful property of logarithms on the previous page. While any appropriate base b can be used, the best practical base is base 10 or base e. We choose base e (natural) logarithms here.

LaTeX: 7^x=127x=12

LaTeX: \ln7^x=\ln12ln7x=ln12

LaTeX: x\:\ln7=\ln12\\
x = \frac{\ln12}{\ln7}\\
x\approx 1.277xln7=ln12x=ln12ln7x1.277

The solution set is {1.277}.

NOTE: When evaluating a quotient of logarithms like LaTeX: \frac{\ln12}{\ln7},\:ln12ln7,do not confuse this quotient with LaTeX: \ln\frac{12}{7}\:ln127(which is equivalent to LaTeX: \ln12-\ln7ln12ln7).

We cannot change the quotient of two logarithms to a difference of logarithms.

LaTeX: \frac{\ln12}{\ln7}\ne\ln\frac{12}{7}ln12ln7ln127

Example

Solve LaTeX: 3^{2x-1}=0.4^{x+2}32x1=0.4x+2. Give the solution to the nearest thousandth.

Solution

LaTeX: 3^{2x-1}=0.4^{x+2}\\
ln3^{2x-1} =ln0.4^{x+2} \\
(2x-1)ln3=(x+2)ln0.4\\
2xln3-ln3=xln0.4+2ln0.4\\
2xln3-xln0.4=2ln0.4+ln3\\
x(2ln3-ln0.4)=2ln0.4+ln3\\
x=\frac{ln0.4^{2} +ln3}{ln3^{2}-ln0.4 } \\
x=\frac{ln0.16+ln3}{ln9-ln0.4} \\
x=\frac{ln0.48}{ln22.5}\\
x\approx  -0.23632x1=0.4x+2ln32x1=ln0.4x+2(2x1)ln3=(x+2)ln0.42xln3ln3=xln0.4+2ln0.42xln3xln0.4=2ln0.4+ln3x(2ln3ln0.4)=2ln0.4+ln3x=ln0.42+ln3ln32ln0.4x=ln0.16+ln3ln9ln0.4x=ln0.48ln22.5x0.236

The solution set is {-0.236}.

Examples To Try

Below are several more examples. Write them down and then try to solve them on your own before reading the solutions provided. (If you need to, return to the page showing all of the logarithm properties while you work on the problems.)

  1. LaTeX: e^{x^2}=200ex2=200
  2. LaTeX: e^{2x+1}\cdot e^{-4x}=3ee2x+1e4x=3e
  3. LaTeX: e^{2x}-4e^x+3=0e2x4ex+3=0

Solutions

  1. LaTeX: e^{x^2}=200ex2=200
    Take the natural logarithm of both sides.

    LaTeX: \ln e^{x^2}=\ln200lnex2=ln200
    Use the power property for logarithms and the fact that LaTeX: \ln e=1lne=1.
    LaTeX: x^2=\ln200x2=ln200
    Take the square root of both sides, and introduce a LaTeX: \pm± to get both roots.
    LaTeX: x=\pm\sqrt[]{\ln200}\approx\pm2.302x=±ln200±2.302
    The solution set is {LaTeX: \pm2.302±2.302}.
  2. LaTeX: e^{2x+1}\cdot e^{-4x}=3ee2x+1e4x=3e
    Use the exponent property LaTeX: a^na^m=a^{n+m}anam=an+m.
    LaTeX: e^{-2x+1}=3ee2x+1=3e
    Divide by LaTeX: e.e.

    LaTeX: e^{-2x}=3e2x=3
    Take the natural logarithm of both sides and use the power property.
    LaTeX: \ln e^{-2x}=\ln3\\
-2xlne=ln3\\
-2x=ln3\\
x=-\frac{1}{2} ln3\approx -0.549lne2x=ln32xlne=ln32x=ln3x=12ln30.549
    The solution set is {-0.549}
  3. LaTeX: e^{2x}-4e^x+3=0e2x4ex+3=0
    If we substitute LaTeX: u=e^x,\:u=ex,we notice that the equation is quadratic in form.
    LaTeX: e^{2x}-4e^x+3=0e2x4ex+3=0
    LaTeX: \left(e^x\right)^2-4\left(e^x\right)+3=0\\u^{2} -4u+3=0\\
(u-1)(u-3)=0
(ex)24(ex)+3=0u24u+3=0(u1)(u3)=0
    LaTeX: u=1u=1 or LaTeX: u=3u=3
    Now substitute LaTeX: e^{x}  ex for LaTeX: u, u, and solve.
    LaTeX: e^x=1\:or\:e^x=3\\
lne^{x} =ln1\:or\:lne^{x}=ln3\\
x=0\:or\:x=ln3 ex=1orex=3lnex=ln1orlnex=ln3x=0orx=ln3
    Both values check, so the solution set is {0, ln 3}.