Graphing Translated Logarithmic Functions

Examples

Graph each function. Give the domain and range.

  1. LaTeX: f\left(x\right)=\log_2\left(x-1\right)f\left(x\right)=\log_2\left(x-1\right)
  2. LaTeX: f\left(x\right)=\left(\log_3x\right)-1f\left(x\right)=\left(\log_3x\right)-1
  3. LaTeX: f\left(x\right)=\log_4\left(x+2\right)+1f\left(x\right)=\log_4\left(x+2\right)+1

Solutions

  1. LaTeX: f\left(x\right)=\log_2\left(x-1\right)f\left(x\right)=\log_2\left(x-1\right)
    The graph of 
    LaTeX: f\left(x\right)=\log_2\left(x-1\right)f\left(x\right)=\log_2\left(x-1\right) is the graph of LaTeX: f\left(x\right)=\log_2x\:f\left(x\right)=\log_2x\:translated 1 unit to the right. The vertical asymptote has equation LaTeX: x=1.\:x=1.\:Since logarithms can be found only for positive numbers, we solve LaTeX: x-1>0\:x-1>0\:to find the domain, LaTeX: \left(1,\infty\right).\:\left(1,\infty\right).\:To determine ordered pairs to plot, use the equivalent exponential form of the equation LaTeX: f\left(x\right)=\log_2\left(x-1\right)f\left(x\right)=\log_2\left(x-1\right).
    LaTeX: y=\log_x\left(x-1\right)y=\log_x\left(x-1\right)
    LaTeX: x-1=2^yx-1=2^y
    LaTeX: x=2^y+1x=2^y+1

    We first choose values for y and then calculate each of the corresponding
    x-values. The range is LaTeX: \left(-\infty,\infty\right).\left(-\infty,\infty\right).

    Graph of log to the base 2 of (x-1).PNG

  2. LaTeX: f\left(x\right)=\left(\log_3x\right)-1f\left(x\right)=\left(\log_3x\right)-1
    The function 
    LaTeX: f\left(x\right)=\left(\log_3x\right)-1f\left(x\right)=\left(\log_3x\right)-1 has the same graph as LaTeX: g\left(x\right)=\log_3x\:g\left(x\right)=\log_3x\:translated 1 unit down. We find the ordered pairs to plot by writing the equation LaTeX: f\left(x\right)=\left(\log_3x\right)-1f\left(x\right)=\left(\log_3x\right)-1 in exponential form.
    LaTeX: f\left(x\right)=\left(\log_3x\right)-1f\left(x\right)=\left(\log_3x\right)-1
    LaTeX: y+1=\log_3xy+1=\log_3x
    LaTeX: x=3^{x+1}x=3^{x+1}

    Again, choose y-values and calculate the corresponding
    x-
    values. The domain is LaTeX: \left(0,\infty\right)\:\left(0,\infty\right)\:and the range is LaTeX: \left(-\infty,\infty\right)\left(-\infty,\infty\right).
    Graph of (log to the base 3 of x) -1.PNG 

  3. LaTeX: f\left(x\right)=\log_4\left(x+2\right)+1f\left(x\right)=\log_4\left(x+2\right)+1
    The graph of LaTeX: f\left(x\right)=\log_4\left(x+2\right)+1f\left(x\right)=\log_4\left(x+2\right)+1 is obtained by shifting the graph of LaTeX: y=\log_3x\:y=\log_3x\:to the left 2 units and up 1 unit. The domain is found by solving LaTeX: x+2>0x+2>0, which yields LaTeX: \left(-2,\infty\right)\left(-2,\infty\right). The vertical asymptote has been shifted to the left 2 units as well, and it has equation LaTeX: x=-2.x=-2. The range is unaffected by the vertical shift and remains LaTeX: \left(-\infty,\infty\right)\left(-\infty,\infty\right).
    Graph of log to the base 4 of (x+2)+1.PNG

Example

This video shows an example of how to recognize the equation for a graph of a logarithmic function. It is the same process as the examples above, but going in the reverse direction. Please watch the Khan video below.