Graphing Logarithmic Functions

Graph of Logarithmic Function with a>1

Here is what the graph of a logarithmic function LaTeX: f\left(x\right)=\log_ax,\:\text{for}\:a>1\:f(x)=logax,fora>1looks like, and a list of characteristics from this graph.

Graph of logarithmic function with base greater than 1.PNG

Characteristics of Graph of Logarithmic Function with a>1

  • Domain: LaTeX: \left(0,\infty\right)(0,)
  • Range: LaTeX: \left(-\infty,\infty\right)(,)
  • LaTeX: f\left(x\right)=\log_ax,\:\text{for}\:a>1\:f(x)=logax,fora>1is increasing and continuous on its entire domain.
  • The y-axis is a vertical asymptote as LaTeX: x\longrightarrow0\:x0from the right.
  • The graph passes through the points LaTeX: \left(\frac{1}{a},-1\right),\left(1,0\right),\:\text{and}\:\left(a,1\right).(1a,1),(1,0),and(a,1).

Example

Here is a Khan video showing how to graph LaTeX: y=\log_5xy=log5x.

Caution:

If you write a logarithmic function in exponential form to graph, as in the Video Example above, start first with y-values to calculate corresponding x-values. Be careful to write the values in the ordered pairs in the correct order.

Graph of Logarithmic Function with 0<a<1

Here is what the graph of a logarithmic function LaTeX: f\left(x\right)=\log_ax,f(x)=logax, LaTeX: \:\text{for}\:0<a<1\:for0<a<1looks like, and a list of characteristics from this graph.

Graph of logarithmic function with base between zero and 1.PNG

Characteristics of Graph of Logarithmic Function with 0<a<1

  • Domain: LaTeX: \left(0,\infty\right)(0,)
  • Range: LaTeX: \left(-\infty,\infty\right)(,)
  • LaTeX: f\left(x\right)=\log_ax,\:\text{for}\:0<a<1\:f(x)=logax,for0<a<1is decreasing and continuous on its entire domain.
  • The y-axis is a vertical asymptote as LaTeX: x\longrightarrow0\:x0from the right.
  • The graph passes through the points  LaTeX: \left(\frac{1}{a},-1\right),\left(1,0\right),\:\text{and}\:\left(a,1\right).(1a,1),(1,0),and(a,1).