Graphing Reflections and Translations

Reflections

  1. Across the Y-Axis
    For any LaTeX: a>1,\:f\left(x\right)=a^x\:a>1,f(x)=axand LaTeX: g\left(x\right)=\left(\frac{1}{a}\right)^xg(x)=(1a)xare reflections across the y-axis. This is because LaTeX: g\left(x\right)=\left(\frac{1}{a}\right)^x=\left(a^{-1}\right)^x=a^{-x}=f\left(-x\right)g(x)=(1a)x=(a1)x=ax=f(x).
    Graphs of exponential functions for a to the x and a to the negative x.PNG
  2. Across the x-axis
    The graphs of LaTeX: f\left(x\right)=a^x\:f(x)=axand LaTeX: g\left(x\right)=-a^x\:g(x)=axare reflections across the x-axis.
    Here is an example with graphs of LaTeX: y=2^x\:y=2xand LaTeX: f\left(x\right)=-2^x.f(x)=2x.

    Reflection across the x-axis with exponential functions.PNG

Translations

  1. Left or Right
    The graph of LaTeX: f\left(x\right)=a^x\:f(x)=axwill be translated c units resulting in the graph of LaTeX: g\left(x\right)=a^{x+c},\:g(x)=ax+c,if LaTeX: f\left(x\right)=a^x\:f(x)=axtranslates to the left, or LaTeX: k\left(x\right)=a^{x-c},\:k(x)=axc,if translating c units to the right.
    For example, here is a graph of LaTeX: y=2^x\:y=2xand LaTeX: f\left(x\right)=2^{x+3}\:f(x)=2x+3showing how replacing theLaTeX: xx with LaTeX: x+3x+3 moves the graph to the left 3 units.Graph of y equals 2 to the x and f of x equals 2 to the (x+3), showing a translation of 3 units to the left.PNG
  2. Up or Down
    The graph of LaTeX: f\left(x\right)=a^x\:f(x)=axwill move k units when LaTeX: g\left(x\right)=a^x+k\:g(x)=ax+kis graphed. It will move up for LaTeX: k>0,\:k>0,and down for LaTeX: k<0.k<0.
    For example, here is a graph of LaTeX: y=2^x\:y=2xalong with a graph of LaTeX: f\left(x\right)=2^{x-2}-1.f(x)=2x21. Notice how the original graph of LaTeX: y=2^x\:y=2xis moved 2 units to the right (because the LaTeX: xx was replaced with LaTeX: x-2x2) and 1 unit down (because of the addition of LaTeX: -11 at the end).
    graph showing translation to the right and down.PNG