Equations and Graphs of Ellipses

Ellipse centered at (0,0).PNG

This ellipse has its center at the origin, foci F(c, 0) and  F(–c, 0), and vertices V(a, 0) and V(–a, 0). The distance from V to F is a  −c and the distance from V to Fis a + c. The sum of these distances is 2a. Since V is on the ellipse, this sum is the constant referred to in the definition of an ellipse.

Thus, for any point P(x, y) on the ellipse, LaTeX: d\left(P,F\right)+d\left(P,F'\right)=2ad(P,F)+d(P,F)=2a.

By the distance formula, LaTeX: d\left(F,P\right)=\sqrt[]{\left(x-c\right)^2+y^2}d(F,P)=(xc)2+y2, and LaTeX: d\left(P,F'\right)=\sqrt[]{\left[x-\left(-c\right)\right]^2+y^2}d(P,F)=[x(c)]2+y2.

Thus we have: LaTeX: d\left(F,P\right)+d\left(P,F'\right)=\sqrt[]{\left(x-c\right)^2+y^2}+\sqrt[]{\left(x+c\right)^2+y^2}=2ad(F,P)+d(P,F)=(xc)2+y2+(x+c)2+y2=2a

Isolating LaTeX: \sqrt[]{\left(x-c\right)^2+y^2}(xc)2+y2 gives:

LaTeX: \sqrt[]{\left(x-c\right)^2+y^2}=2a-\sqrt[]{\left(x+c\right)^2+y^2}(xc)2+y2=2a(x+c)2+y2

Now carefully squaring both sides we get:

LaTeX: \left(x-c\right)^2+y^2=4a^2-4a\sqrt[]{\left(x+c\right)^2+y^2}+\left(x+c\right)^2+y^2(xc)2+y2=4a24a(x+c)2+y2+(x+c)2+y2

Next, square both LaTeX: x-cxc and LaTeX: x+cx+c.

LaTeX: x^2-2cx+c^2+y^2=4a^2-4a\sqrt[]{\left(x+c\right)^2+y^2}+x^2+2cx+c^2+y^2x22cx+c2+y2=4a24a(x+c)2+y2+x2+2cx+c2+y2

Isolate the square root term, LaTeX: 4a\sqrt[]{\left(x+c\right)^2+y^2}4a(x+c)2+y2.

LaTeX: 4a\sqrt[]{\left(x+c\right)^2+y^2}=4a^2+4cx4a(x+c)2+y2=4a2+4cx

Now divide both sides by 4.

LaTeX: a\sqrt[]{\left(x+c\right)^2+y^2}=a^2+cxa(x+c)2+y2=a2+cx

Square each side.

LaTeX: a^2\left(x^2+2cx+c^2+y^2\right)=a^4+2ca^2x+c^2x^2a2(x2+2cx+c2+y2)=a4+2ca2x+c2x2

Simplify the left side by using the distributive property.

LaTeX: a^2x^2+2ca^2x+a^2c^2+a^2y^2=a^4+2ca^2x+c^2x^2a2x2+2ca2x+a2c2+a2y2=a4+2ca2x+c2x2

Subtract LaTeX: 2ca^2x2ca2x, rearrange terms, then factor.

LaTeX: a^2x^2+a^2c^2+a^2y^2=a^4+c^2x^2a2x2+a2c2+a2y2=a4+c2x2

LaTeX: a^2x^2+c^2x^2+a^2y^2=a^4+a^2c^2a2x2+c2x2+a2y2=a4+a2c2

LaTeX: \left(a^2-c^2\right)x^2+a^2y^2=a^2\left(a^2-c^2\right)(a2c2)x2+a2y2=a2(a2c2)

Divide by LaTeX: a^2\left(a^2-c^2\right)a2(a2c2).

LaTeX: \frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1x2a2+y2a2c2=1

Ellipse centered at (0,0)-1.PNG

Returning to this figure, since B(0, b) is on the ellipse, we have d(B, F) + d(B, F') = 2LaTeX: aa.

LaTeX: \sqrt[]{\left(-c\right)^2+b^2}+\sqrt[]{c^2+b^2}=2a(c)2+b2+c2+b2=2a

LaTeX: 2\sqrt[]{c^2+b^2}=2a2c2+b2=2a

LaTeX: \sqrt[]{c^2+b^2}=ac2+b2=a

LaTeX: c^2+b^2=a^2c2+b2=a2

LaTeX: b^2=a^2-c^2b2=a2c2

Replacing LaTeX: a^2-c^2\:a2c2with LaTeX: b^2b2 in the equation LaTeX: \frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1x2a2+y2a2c2=1 gives the standard form of the equation of an ellipse centered at the origin with foci on the x-axis.

LaTeX: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1x2a2+y2b2=1

If the vertices and foci were on the y-axis, an almost identical derivation could be used to get the following standard form.

LaTeX: \frac{x^2}{b^2}+\frac{y^2}{a^2}=1x2b2+y2a2=1