Finding the Doubling Time for Money

How long will it take for the money in an account that accrues interest at a rate of 3%, compounded continuously, to double?

Solution

To solve this problem we need to use the Continuous Compounding Formula.

Continuous Compounding Formula

LaTeX: A=Pe^{rt}A=Pert

In this case, A = The Amount = 2(Principal) = 2P, and r = The Interest Rate = 3% = 0.03.

LaTeX: 2P=Pe^{0.03t}2P=Pe0.03t

LaTeX: 2=e^{0.03t}2=e0.03t

LaTeX: \ln2=\ln e^{0.03t}=0.03tln2=lne0.03t=0.03t

LaTeX: t=\frac{\ln2}{0.03}\approx23.10t=ln20.0323.10

It will take about 23 years for the amount to double.