Using the Properties of Logarithms
Examples
Rewrite each expression. Assume all variables represent positive real numbers, with a≠1 and
b≠1.
log6(7⋅9)
log9157
log3√8
loga3√m2
logamnqp2t4
logbn√x3y5zm
Solutions
log6(7⋅9)=log67+log69
log9157=log915−log97
log3√8=log3(812)=12log38
loga3√m2=logam23=23logam
-
logamnqp2t4=loga(mnq)−loga(p2t4)=logam+logan+logaq−(logap2+logat4)
=logam+logan+logaq−(2logap+4logat)=logam+logan+logaq−2logap−4logat
-
logbn√x3y5zm=logb(x3y5zm)1n=1nlogb(x3y5zm)
=1n(logbx3+logby5−logbzm)=1n(3logbx+5logby−mlogbz)
=3nlogbx+5nlogby−mnlogbz
Examples
Write each expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers, with a≠1 and
b≠1.
log3(x+2)+log3x−log32
2logam−3logan
12logbm+32logb2n−logbm2n
Solutions
log3(x+2)+log3x−log32=log3(x+2)x2
2logam−3logan=logam2−logan3=logam2n3
-
12logbm+32logb2n−logbm2n=logbm12+logb(2n)32−logbm2n
=logbm12(2n)32m2n=logb232n12m32=logb(23nm3)12=logb√8nm3
Caution:
There is no property of logarithms to rewrite a logarithm of a sum or difference. That is why log3(x + 2) was not written as log3 x + log3 2. The distributive property does not apply in a situation like this because log3 (x + y) is one term. The abbreviation “log” is a function name, not a factor.
Examples Using the Properties of Logarithms with Numerical Values
Assume that log102≈0.3010,find each logarithm without using a scientific calculator.
log104
log105
Solutions
log104=log1022=2log102≈2(0.3010)≈0.6020
log105=log10102=log1010−log102≈1−0.3010≈0.6990