Using the Properties of Logarithms

Examples

Rewrite each expression. Assume all variables represent positive real numbers, with LaTeX: a\ne1a1 and LaTeX: b\ne1.b1.

  1. LaTeX: \log_6\left(7\cdot9\right)log6(79)
  2. LaTeX: \log_9\frac{15}{7}log9157
  3. LaTeX: \log_3\sqrt[]{8}log38
  4. LaTeX: \log_a\sqrt[3]{m^2}loga3m2
  5. LaTeX: \log_a\frac{mnq}{p^2t^4}logamnqp2t4
  6. LaTeX: \log_b\sqrt[n]{\frac{x^3y^5}{z^m}}logbnx3y5zm

Solutions

  1. LaTeX: \log_6\left(7\cdot9\right)=\log_67+\log_69log6(79)=log67+log69
  2. LaTeX: \log_9\frac{15}{7}=\log_915-\log_97log9157=log915log97
  3. LaTeX: \log_3\sqrt[]{8}=\log_3\left(8^{\frac{1}{2}}\right)=\frac{1}{2}\log_38log38=log3(812)=12log38
  4. LaTeX: \log_a\sqrt[3]{m^2}=\log_am^{\frac{2}{3}}=\frac{2}{3}\log_amloga3m2=logam23=23logam
  5. LaTeX: \log_a\frac{mnq}{p^2t^4}=\log_a\left(mnq\right)-\log_a\left(p^2t^4\right)=\log_am+\log_an+\log_aq-\left(\log_ap^2+\log_at^4\right)logamnqp2t4=loga(mnq)loga(p2t4)=logam+logan+logaq(logap2+logat4)
    LaTeX: =\log_am+\log_an+\log_aq-\left(2\log_ap+4\log_at\right)=\log_am+\log_an+\log_aq-2\log_ap-4\log_at=logam+logan+logaq(2logap+4logat)=logam+logan+logaq2logap4logat
  6. LaTeX: \log_b\sqrt[n]{\frac{x^3y^5}{z^m}}=\log_b\left(\frac{x^3y^5}{z^m}\right)^{\frac{1}{n}}=\frac{1}{n}\log_b\left(\frac{x^3y^5}{z^m}\right)logbnx3y5zm=logb(x3y5zm)1n=1nlogb(x3y5zm)
    LaTeX: =\frac{1}{n}\left(\log_bx^3+\log_by^5-\log_bz^m\right)=\frac{1}{n}\left(3\log_bx+5\log_by-mlog_bz\right)=1n(logbx3+logby5logbzm)=1n(3logbx+5logbymlogbz)
    LaTeX: =\frac{3}{n}\log_bx+\frac{5}{n}\log_by-\frac{m}{n}\log_bz=3nlogbx+5nlogbymnlogbz

Examples

Write each expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers, with LaTeX: a\ne1a1 and LaTeX: b\ne1.b1.

  1. LaTeX: \log_3\left(x+2\right)+\log_3x-\log_32log3(x+2)+log3xlog32
  2. LaTeX: 2\log_am-3\log_an2logam3logan
  3. LaTeX: \frac{1}{2}\log_bm+\frac{3}{2}\log_b2n-\log_bm^2n12logbm+32logb2nlogbm2n

Solutions

  1. LaTeX: \log_3\left(x+2\right)+\log_3x-\log_32=\log_3\frac{\left(x+2\right)x}{2}log3(x+2)+log3xlog32=log3(x+2)x2
  2. LaTeX: 2\log_am-3\log_an=\log_am^2-\log_an^3=\log_a\frac{m^2}{n^3}2logam3logan=logam2logan3=logam2n3
  3. LaTeX: \frac{1}{2}\log_bm+\frac{3}{2}\log_b2n-\log_bm^2n=\log_bm^{\frac{1}{2}}+\log_b\left(2n\right)^{\frac{3}{2}}-\log_bm^2n12logbm+32logb2nlogbm2n=logbm12+logb(2n)32logbm2n

    LaTeX: =\log_b\frac{m^{\frac{1}{2}}\left(2n\right)^{\frac{3}{2}}}{m^2n}=\log_b\frac{2^{\frac{3}{2}}n^{\frac{1}{2}}}{m^{\frac{3}{2}}}=\log_b\left(\frac{2^3n}{m^3}\right)^{\frac{1}{2}}=\log_b\sqrt[]{\frac{8n}{m^3}}=logbm12(2n)32m2n=logb232n12m32=logb(23nm3)12=logb8nm3

Caution:

There is no property of logarithms to rewrite a logarithm of a sum or difference. That is why log3(x + 2) was not written as log3 x + log3 2. The distributive property does not apply in a situation like this because log3 (x + y) is one term. The abbreviation “log” is a function name, not a factor.

Examples Using the Properties of Logarithms with Numerical Values

Assume that LaTeX: \log_{10}2\approx0.3010,\:log1020.3010,find each logarithm without using a scientific calculator.

  1. LaTeX: \log_{10}4log104
  2. LaTeX: \log_{10}5log105

Solutions

  1. LaTeX: \log_{10}4=\log_{10}2^2=2\log_{10}2\approx2\left(0.3010\right)\approx0.6020log104=log1022=2log1022(0.3010)0.6020
  2. LaTeX: \log_{10}5=\log_{10}\frac{10}{2}=\log_{10}10-\log_{10}2\approx1-0.3010\approx0.6990log105=log10102=log1010log10210.30100.6990