Writing Equivalent Logarithmic and Exponential Equations

Here is a table of several pairs of equivalent statements, written in both logarithmic and exponential forms:

Logarithmic Form Exponential Form
LaTeX: \log_28=3log28=3 LaTeX: 2^3=823=8
LaTeX: \log_{\frac{1}{2}}16=-4log1216=4 LaTeX: \left(\frac{1}{2}\right)^{-4}=16(12)4=16
LaTeX: \log_{10}100,000=5log10100,000=5 LaTeX: 10^5=100,000105=100,000
LaTeX: \log_3\frac{1}{81}=-4log3181=4 LaTeX: 3^{-4}=\frac{1}{81}34=181
LaTeX: \log_55=1log55=1 LaTeX: 5^1=551=5
LaTeX: \log_{\frac{3}{4}}2=0log342=0 LaTeX: \left(\frac{3}{4}\right)^0=1(34)0=1

To remember the relationships among LaTeX: a,\:x,\:a,x,and LaTeX: yy in the two equivalent forms LaTeX: y=\log_ax\:y=logaxand LaTeX: x=a^y,\:x=ay,refer to these two diagrams below:

diagrams showing the relationship between exponential and logarithmic equations.PNG