Inverse Functions
Definition of Inverse Function
Letfbe a one-to-one function. Then
g is the invers function of
f if
(f∘g)(x)=xforeveryxinthedomainofg,and
(g∘f)(x)=xforeveryxinthedomainoff.
Example
Is g the inverse of
f if
f(x)=x3−1and
g(x)=3√x+1 ?
Solution
To determine whether or not g(x) is the inverse function of
f(x), we use the definition above:
(f∘g)(x)=f(g(x))=f(3√x+1)=(3√x+1)3−1=x+1−1=x
and
(g∘f)(x)=g(f(x))=g(x3−1)=3√(x3−1)+1=3√x3=x
Since, (f∘g)(x)=(g∘f)(x)=x,function
g is the inverse of function
f.
Notation for Inverse Functions
The inverse function of the function f(x)is written as
f−1(x).
Example
If f(x)=x3−1, then
f−1(x)=3√x+1.
Note: Do not confuse the -1 in
f−1(x)with a negative exponent. The symbol
f−1(x)represents the inverse function of
f(x), NOT
1f(x).