Asymptotes

Let p(x) and q(x) define polynomials. Consider the rational function LaTeX: f\left(x\right)=\frac{p\left(x\right)}{q\left(x\right)}f(x)=p(x)q(x)

written in lowest terms, and real numbers a and b.

  1. If LaTeX: \mid f\left(x\right)\mid\longrightarrow\infty\:f(x)∣⟶as LaTeX: x\longrightarrow a,\:xa,then the line LaTeX: x=a\:x=ais a vertical asymptote.
  2. If LaTeX: f\left(x\right)\longrightarrow b\:f(x)bas LaTeX: \mid x\mid\longrightarrow\infty,\:x∣⟶,then the line LaTeX: y=b\:y=bis the horizontal asymptote.

Determining Asymptotes

To find the asymptotes of a rational function defined by a rational expression in lowest terms, use the following procedures.

  1. Vertical Asymptotes
    Find any vertical asymptotes by setting the denominator equal to 0 and solving for x. If a is a zero of the denominator, then the line x= a is a vertical asymptote.
  2. Other Asymptotes
    Determine any other asymptotes by considering three possibilities:

    1. If the numerator has lesser degree than the denominator, then there is a horizontal asymptote y = 0 (the x-axis).
    2. If the numerator and denominator have the same degree, and the function is of the form LaTeX: f\left(x\right)=\frac{a_nx^n+...+a_0}{b_nx^n+...+b_0},\:f(x)=anxn+...+a0bnxn+...+b0,where LaTeX: a_n,b_n\ne0,\:an,bn0,then the horizontal asymptote has equation LaTeX: y=\frac{a_n}{b_n}.y=anbn.

    3. If the numerator is of degree exactly one more than the denominator, then there will be an oblique (slanted) asymptote. To find it, divide the numerator by the denominator and disregard the remainder. Set the rest of the quotient equal to y to obtain the equation of the asymptote.

Note

The graph of a rational function may have more than one vertical asymptote, or it may have none at all. The graph cannot intersect any vertical asymptote. There can be at most one other (nonvertical) asymptote, and the graph may intersect that asymptote.

Examples

Give the equations of any vertical, horizontal, or oblique asymptotes for the graph of each rational function.

  1. LaTeX: f\left(x\right)=\frac{x+1}{\left(2x-1\right)\left(x+3\right)}f(x)=x+1(2x1)(x+3)
  2. LaTeX: f\left(x\right)=\frac{2x+1}{x-3}f(x)=2x+1x3
  3. LaTeX: f\left(x\right)=\frac{x^2+1}{x-2}f(x)=x2+1x2

Solutions

  1. LaTeX: f\left(x\right)=\frac{x+1}{\left(2x-1\right)\left(x+3\right)}f(x)=x+1(2x1)(x+3)

    Solution To find the vertical asymptotes, set the denominator equal to 0 and solve.
    LaTeX: \left(2x-1\right)\left(x+3\right)=0(2x1)(x+3)=0
    Using the zero-factor property:
    LaTeX: 2x-1=0\:\:or\:\:x+3=02x1=0orx+3=0
    Solve each equation.
    LaTeX: x=\frac{1}{2}\:\:or\:\:x=-3x=12orx=3

    The equations of the vertical asymptotes are  LaTeX: x=\frac{1}{2}\:\:x=12andLaTeX: \:x=-3.x=3.

    To find the equation of the horizontal asymptote, divide each term by the greatest power of x in the expression. First, multiply the factors in the denominator.
    LaTeX: f\left(x\right)=\frac{x+1}{\left(2x-1\right)\left(x+3\right)}=\frac{x+1}{2x^2+5x-3}f(x)=x+1(2x1)(x+3)=x+12x2+5x3

    Now divide each term in the numerator and denominator by LaTeX: x^2x2 since 2 is the greatest power of x.

    LaTeX: f\left(x\right)=\frac{\frac{x}{x^2}+\frac{1}{x^2}}{\frac{2x^2}{x^2}+\frac{5x}{x^2}-\frac{3}{x^2}}=\frac{\frac{1}{x}+\frac{1}{x^2}}{2+\frac{5}{x}-\frac{3}{x^2}}\:\:Stop\:here.\:Leave\:the\:expression\:in\:complex\:form.f(x)=xx2+1x22x2x2+5xx23x2=1x+1x22+5x3x2Stophere.Leavetheexpressionincomplexform.

    As LaTeX: \mid x\mid\:xincreases without bound, the quotients LaTeX: \frac{1}{x},\:\frac{1}{x^2},\:\frac{5}{x},\:1x,1x2,5x,and LaTeX: \frac{3}{x^{2\:}}3x2 all approach 0, and the value of f(x) approaches LaTeX: \frac{0+0}{2+0-0}=\frac{0}{2}=0.0+02+00=02=0.
    The line
    y = 0 (that is, the x-axis) is therefore the horizontal asymptote.

  2. LaTeX: f\left(x\right)=\frac{2x+1}{x-3}f(x)=2x+1x3

    Set the denominator x − 3 equal to 0 to find that the vertical asymptote has equation x = 3. To find the horizontal asymptote, divide each term in the rational expression by x since the greatest power of x in the expression is 1. LaTeX: f\left(x\right)=\frac{2x+1}{x-3}=\frac{\frac{2x}{x}+\frac{1}{x}}{\frac{x}{x}-\frac{3}{x}}=\frac{2+\frac{1}{x}}{1-\frac{3}{x}}f(x)=2x+1x3=2xx+1xxx3x=2+1x13x
    As LaTeX: \mid x\mid\:xincreases without bound, both LaTeX: \frac{1}{x}1x and LaTeX: \frac{3}{x}\:3xapproach 0, and f(x) approaches LaTeX: \frac{2+0}{1-0}=\frac{2}{1}=2,\:2+010=21=2,so the line y = 2 is the horizontal asymptote.

  3. LaTeX: f\left(x\right)=\frac{x^2+1}{x-2}f(x)=x2+1x2

    Setting the denominator x – 2 equal to 0 shows that the vertical asymptote has equation x = 2. If we divide by the greatest  power of x as before (LaTeX: x^2\:x2in this case), we see there is no horizontal asymptote because LaTeX: f\left(x\right)=\frac{x^2+1}{x-2}=\frac{\frac{x^2}{x^2}+\frac{1}{x^2}}{\frac{x}{x^2}-\frac{2}{x^2}}=\frac{1+\frac{1}{x^2}}{\frac{1}{x}-\frac{2}{x^2}}f(x)=x2+1x2=x2x2+1x2xx22x2=1+1x21x2x2 does not approach any real number as LaTeX: \mid x\mid\longrightarrow\infty,\:x∣⟶,since LaTeX: \frac{1}{0}\:10is undefined. This happens whenever the degree of the numerator is greater than the degree of the denominator. In such cases, divide the denominator into the numerator to write the expression in another form. We use synthetic division, as shown. 
    Using synthetic division to divide by x-2.PNG
    The result enables us to write the function as follows.
    LaTeX: f\left(x\right)=x+2+\frac{5}{x-2}f(x)=x+2+5x2
    For very large values of LaTeX: \mid x\mid,\:\frac{5}{x-2}\:x,5x2is close to 0, and the graph approaches the line y = x + 2. This line is an oblique asymptote (slanted, neither vertical nor horizontal) for the graph of the function.