The Difference Quotient

The difference quotient is an important because it is essential in the definition of the derivative of a function in calculus. The derivative gives a definition of the slope of the tangent line to the graph of a function at a given point.

The difference quotient is related to the average rate of change of a function on an interval LaTeX: \left[a,b\right].[a,b].

The Average Rate of Change of a Function on an Interval [a,b]

The average rate of change of a function on an interval LaTeX: \left[a,b\right]=\frac{f\left(b\right)-f\left(a\right)}{b-a}[a,b]=f(b)f(a)ba

Now let's consider the following scenario. Let point LaTeX: PP be a point on the graph of the function LaTeX: f\left(x\right)\:f(x)and suppose LaTeX: hh is a positive number. If we let LaTeX: \left(x,f\left(x\right)\right)\:(x,f(x))denote the coordinates of point LaTeX: PP, and let LaTeX: \left(x+h,f\left(x+h\right)\right)\:(x+h,f(x+h))denote the coordinates of a point LaTeX: Q\:Qon the graph of LaTeX: y=f\left(x\right),\:y=f(x),then we the line joining LaTeX: P\:Pand LaTeX: Q\:Qwill have the following slope:

LaTeX: m=\frac{\Delta y}{\Delta x}=\frac{change\:in\:y}{change\:in\:x}=\frac{f\left(x+h\right)-f\left(x\right)}{\left(x+h\right)-x}=\frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne0m=ΔyΔx=changeinychangeinx=f(x+h)f(x)(x+h)x=f(x+h)f(x)h,h0

graph of f(x) showing f(x+h) and the line connecting points P and Q.PNG

The Difference Quotient

The difference quotient LaTeX: =\frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne0=f(x+h)f(x)h,h0

Example

Here is a video showing how to compute a difference quotient: