Increasing, Decreasing, and Constant Intervals

To determine whether a function is increasing, decreasing, or constant over an interval, ask "What does the y do as the x goes from left to right?". If the y goes up, the function is increasing. If the y goes down, the function is decreasing, and if the y stays flat, the function is constant.

Formally,

Increasing, Decreasing, and Constant Functions

Suppose the a function f is defined over an open interval I and LaTeX: x_1\:x1and LaTeX: x_2\:x2are in the interval I.

  1. LaTeX: f\left(x\right)\:f(x)increases over I if, whenever LaTeX: x_1<x_2,\:f\left(x_1\right)<f\left(x_2\right).x1<x2,f(x1)<f(x2).
  2. LaTeX: f\left(x\right)\:f(x)decreases over I if, whenever LaTeX: x_1<x_2,\:f\left(x_1\right)>f\left(x_2\right).x1<x2,f(x1)>f(x2).
  3. LaTeX: f\left(x\right)\:f(x)is constant over I if, for every LaTeX: x_1\:x1and LaTeX: x_2,\:f\left(x_1\right)=f\left(x_2\right)x2,f(x1)=f(x2)

 

On the next page you are ready to complete Homework 2.3